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The steady, axisymmetric, converging motion of a viscous incompressible fluid 
inside an infinite right circular cone is considered. It is shown that the exact 
solution of the Navier-Stokes equation for the stream function @ is of the form 
@(r,  0) = AP(rv/A, 0), where ( r ,  0) are spherical polar co-ordinates chosen so 
r = 0 is the apex and 0 = 0 is the axis of the cone, 2nA is the volumetric flow rate, 
and v the kinematic viscosity of the fluid. Asymptotic expansions of the stream 
function are found for large and small rv/A. 

For large rv/A, Stokes’s method for slow motions is generalized to obtain 
a complete asymptotic expansion. Except for cones of special angles, all terms 
in this expansion may theoretically be found. 

For small rv/A a solution is constructed in two parts, namely, an inner expan- 
sion which starts from boundary-layer type equations as well as the no-slip 
condition a t  the wall, and an outer expansion in unstretched variables rv/A and 
cos 0 which satisfies the boundary conditions a t  the axis of the cone. The condi- 
tion that the inner solution merge with the outer solution with an exponentially 
small error requires an outer solution near the apex which is not potential sink 
flow, as might perhaps have been expected from the solution for two-dimensional 
flow in a wedge. The simplest outer flow satisfying the requirement is a vortex 
motion. Complete inner and outer expansions are developed and it is shown that 
they contain only six undetermined constants which must be determined by 
joining this solution numerically to the Stokes solution upstream. The inclusion 
of logarithmic terms in these expansions has not been found necessary. 

1. Introduction 
We are concerned with a theoretical investigation of viscous incompressible 

converging flow inside a cone. Harrison (1920) was motivated by Hamel’s (1916) 
radial flow solution for a wedge to seek a similar solution for a cone, but found 
that such a solution could not satisfy the Navier-Stokes equations unless the 
inertial terms were neglected in the manner of Stokes. He found a solution of 
Stokes’s equation valid for very slow motions which might be encountered far 
from the apex. 

The difference in the two- and three-dimensional flows is a result of the way 
the viscosity appears in the exact solutions. Introduce a system of spherical 
polar co-ordinates ( r ,  0, $), and denote the velocity components in these direc- 
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tions by (u, v, w) respectively. The axis of an infinite cone with semi-vertex angle 
a is chosen to lie along the polar axis with the apex at the origin (figure 1). 
Consider a fluid with constant density p and viscosity pf and steady-state 
solutions with axial symmetry and a zero azimuthal component of velocity, 
i.e. a/at = = w = 0. In  9 2 the problem is formulated mathematically, and 
it is shown that the exact solution for the stream function $ is of the form 

(1.1) $(r,  8)  = AF(rv/A, 8, a), 

where v ( = pf/p)  is the kinematic viscosity, and % - A  is the volumetric flow rate. 
The result also follows from dimensional analysis. 

Polar axis 1 

r=O 

FIGURE 1. Sketch of the geometry. 

The relevant variables and parameters are k, r, 8, p', p, A ,  and a. The dimen- 
sionless stream function $ /A  must be a function of dimensionless combinations 
of the independent variables and parameters. Only one dimensionless variable 
involving 1c can be constructed; it is rv /A.  Thus, $ / A  must be a function of 
rv/A, 8, and a, which is the result (1.1). 

In  two dimensions $ / A  must again depend on dimensionless combinations of 
variables and parameters, but A is now a volumetric flow rate per unit breadth. 
Thus, v / A  is dimensionless, and r can no longer be non-dimensionalized by any 
combinations with these parameters. Hence, $ / A  must be a function of 8, a, and 
v/A,  and the only solutions possible in a wedge result in purely radial flow. 

To interpret (1.1) note that the exact solution depends on r only through the 
dimensionless variable 

Hence r -+ 0 with v fixed is equivalent to v-f 0 with r fixed, and r -+ co with v fixed 
is equivalent to v+ co with r fixed. I/[, which is proportional to 1/v, may be 
considered a local Reynolds number, and for a given viscosity we might expect to 
find motion characterized by a core flow and a boundary layer in the neighbour- 
hood of the apex ($-+ 0)  and creeping flow, equivalent to highly viscous motion, 

(1.2) 6 = w / A .  
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far from the apex (t-tco). In  this paper asymptotic solutions of the Navier- 
Stokes equations are found for large and small (. Because the product YV appears 
in the exact solution, the solutions found here are at the same time co-ordinate 
and parameter type expansions (Chang 1961). 

Methods of approximating solutions of the Navier-Stokes equations are known 
for very small or very large viscosities. Conventional boundary-layer theory, 
which is concerned with the former, may be extended so that complete asymptotic 
solutions of the Navier-Stokes equations may be found for large Reynolds 
numbers (Kaplun 1954; Lagerstrom & Cole 1955; Goldstein 1956, 1960). In  
extended boundary-layer theory a solution is constructed in two parts, viz. an 
inner expansion which satisfies a no-slip condition at a wall, and an outer 
expansion which satisfies boundary conditions outside the shear layer. In  addi- 
tion, the inner solution must merge with the outer solution in the following way: 
let y be the perpendicular distance measured from the wall to a point in the fluid, 
and let 7 = y/vn (n > 0) be the stretched variable (or some multiple of it not 
involving v) in the boundary-layer solution. The merging condition requires that 
the difference between the inner and outer solutions, when y + co in the former 
and y -+ 0 in the latter, tend to zero. Our present knowledge of these expansions 
indicates that this difference must be exponentially small to have a consistent 
theory of approximation which can be improved step by step (for a more detailed 
discussion of this matter see Goldstein 1965). This will be assumed throughout 
this paper. 

These methods of approximation raise question of existence, uniqueness, and 
stability, but they must be overlooked a t  this time to obtain useful results. Here 
no attempt is made to establish with rigour the asymptotic nature of the solutions 
obtained, yet it is shown that complete formal solutions can be found. The results 
of the analysis are not applicable to diverging flow where motion takes place 
against an adverse pressure gradient and only converging flow will be considered. 

In  8 3 an extended Stokes expansion is developed which represents the exact 
solution asymptotically for &+ 00. The first term in this expansion is the Stokes 
solution found by Harrison. Four higher-order terms have been obtained, the 
last two by numerical integration. It is shown by induction that all terms in this 
expansion may be found. 

A determination of the flow near the apex requires a knowledge of the core flow 
near the axis of the cone. The solution for a wedge (Goldstein 1938, p. 143) 
suggests at first sight that this flow might be that of a potential sink. However, 
the condition v-f 0 in the wedge solution occurs uniformly for all r ,  whereas in the 
cone the motion far from the apex is one of high viscosity no matter how small 
v is, provided it is greater than zero; i.e. the fluid near the apex has come from 
a region where viscous effects were enormous, and there is no a priori reason to 
believe that vorticity has not diffused throughout the fluid. 

In  3 4 all possible boundary-layer solutions are considered for which the radial 
velocity at  the edge of the boundary layer U cc rs. When s = - 2 (this corresponds 
to potential sink flow outside the boundary layer) the radial velocity of the 
boundary-layer solution asymptotes its value a t  the edge of the boundary layer 
with an algebraically small error; this violates our assumption of exponential 
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smallness. When s < - 3 boundary-layer solutions satisfying the exponential 
smallness requirement can be found. Reasons are given for choosing s = - 3. 
$ 5 is devoted to the development of an outer expansion which has the proper 
behaviour a t  the wall and which satisfies the equations of motion and boundary 
conditions at the axis of the cone. It is shown that all terms in this expansion 
may theoretically be found, and the number of arbitrary constants introduced 
at each successive step is determined. 

In  $ 6  an inner expansion is developed which matches the outer expansion 
with an exponentially small error. These expansions are shown to contain only 
six undetermined constants. Finally, $ 7 is devoted to a discussion of the result, 

2. Mathematical formulation of the problem and similarity pro- 
perties of the exact solution 

(a) FormuEation 
In  terms of the notation introduced in $ 1  the equations of continuity and 
momentum are (Goldstein 1938) 

1 a(r‘h) 1 a(vsin8) 
r2 ar rsinf? 38 

+- = 0, _ _ _  

and 

where 

Let = coso (0 G e < n, 1 2 2 -1). (2.5) 

The continuity equation is satisfied identically by using a Stokes stream 
function II. such that 

and 

For axisymmetric flow the vorticity has only an azimuthal component 6 
given by 

where 

Eliminating the pressure between (2.2) and (2.3) and using (2.6) and (2.7) yields 

or 

(2.10) 

(2.11) 

in the usual notation. 
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Boundary conditions require the fluid velocity to vanish at the wall, which 
may be specified by p = p = COSCI, i.e. 

(2.12) 

$ is constant along the wall, and it is convenient to take its value there equal to 
zero, or 

@(r,P) = 0. (2.13) 

In the steady state the flux of fluid crossing every section of the cone must be 
the same, namely 2nA. Hence 

[dQ is the differential solid angle = 2n sin 0 dB = - 277 dp.] Therefore, 

@(r, 1) = A .  (2.15) 

Finally, we assume the flow far from the apex is purely radial. (2.7) then 
implies 

@(r,,u) N @(p) as r+co for 1 2 p > p. (2.16) 

(2.11), (2.12), (2.13), (2.15) and (2.16) constitute the mathematical formulation 
of this problem. 

(b)  Similarity 

An infinite cone has no characteristic length so a conventional Reynolds number 
cannot be defined. Introducing the dimensionless variable fl  into (2.1 l), (2.12), 
(2.13), (2.15) and (2.16) yields: 

(2.17) 

(g) = @(fl,P) = 0 for fl > 0, (2.18) 

1cc(fl,1) = A ,  (2.19) 
P=’ 

@(fl,P) $(p) as fl+W for 1 > p  > p .  (2.20) 

@lA = F(fl?P, PI, (2.21) 

D2 is the operator of (2.9) with r replaced by c. If a solution exists, as is assumed, 
it must be of the form 

where F is a function of f l ,  p, and cone angle only. 

3. Stokes flow 
From the boundary condition (2.16) u and v vanish at an infinite distance 

from the apex. Thus a region of a Stokes flow is expected, and (1.2) and (2.21) 
justify the equivalence of large r with large v. 

By neglecting the non-linear terms in (2.17) a Stokes solution satisfying all 
the boundary conditions was found by Harrison (1930). This solution come- 
sponds to purely radial flow, and the neglected terms in the radial velocity 

4-2 
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equation are of O [ ( , U - / ~ ) / < ~ ] ,  so the approximation is more accurate for large ( 
and regions close to the wall. Stokes's method can be generalized to obtain an 
asymptotic solution for large 6 in the form of a series whose lowest-order term 
coincides with Harrison's solution. Thus, for large c, 

The corresponding velocity components are 

If (3.1) is formally substituted in (2.17) and coefficients of like powers of c are 
equated to zero, a set of ordinary differential equations is obtained which 
determine the f,'s. The equation for the nth term is 

( 1 - ~ 2 ) 2 f ~ - 4 ~ ( 1 - ~ ~ 2 ) f ~ + 2 ( n + 1 ) ( n + 2 ) ( 1 - p 2 ) f ~ + ( n + 3 ) ( n + 2 ) ( n + 1 ) n f ,  

= %(p,fo,fi, *.*,fn-l) ,  (3.3) 

where Ka is a function of p and the fn's up to fn-l. The explicit form of Fn and 
the general expression for the pressure are given in Appendix A, § 1. 

The boundary conditions (2.18) are satisfied if 

fn(P)  =fA(P) = 0 (n 0). 
For v, to be finite a t  p = 1, 

The flux condition (2.19) requires 

fn(l) = 0 (n > 0). 

fO(1) = 1. 

Complementary solutions of (3.3) which are finite and analytic at p = 1 are 

where P, is the Legendre polynomial of degree n. If a particular solution y,(p) 
of (3.3) is found for n > 0, which is analytic in the neighbourhood of p = 1, 
with yn( 1) = 0, then the solution for f,(p) can be written 

fn(p) = yn(P) + (bA(P)W,+dP) - yn(P) WA+~(P)IK(P) 
+ [YntP) wA(P) - YA(P) W,(P)IK+~(PU)IIJ~(P), (3.7) 

where U P )  = W,(P) T Z + z ( P )  - WA(P) %+2(/4-  (3.8) 

This solution satisfies the differential equation (3.3), the boundary conditions 
(3.4) and (3.5) and is analytic in the neighbourhood of p = 1. It may be shown 
by induction that solutions fn(p), which satisfy (3.3), (3.4) and (3.5) may always 
be found provided 0 < P < 1. To facilitate this argument we use the following 
properties of Jn(P), which are established in Appendix A, 9 2. 

t Generally this series and others which appear throughout this paper are asymptotic. 
The stream functions @s, $c, and @b-c (the last two are defined in S 5 and 8 6) and the 
physical quantities derived therefrom are defined as the s u m  of a k i t e  number (say k) of 
terms. For numerical calculations k will be stated in each context. 
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For n > 0, Jn(p) has a simple zero a t  /3 = 0, double zeros at p = 2 1, and is an 
odd function of p. In  addition, Jn(p) vanishes nowhere in the interval - 1 < p < 1 
except at these points. Jo(/3) is a special case which has a double zero at p = 1, 
a, simple zero at /3 = - 4, and is neither even nor odd. 

0.08 I I I I I I I I I  1 1 1  I 

Ic 
FIGURE 2. f3(,u) and&@) for ,5 = 04366. 

Solutions for fo, fl, and f 2  have been found analytically. They are 

fob) = m P  -PIZ (P + 2/31> 

f1w = +w2u -p2) ( P - P ~ L -  ( 5 ~ 2 -  3 ) / ~ 1 ,  

2 

1 

0 

- I  

- 2  2 - 
.m 
% 

- 3  

- 4  

- 5  

- 6  

(3.9) 
(3.10) 

and fi(P) = &B3{(1-P) (P-P12 [bo+bl~~+bb,P2+b~1U3+bplU.41 
-p(' -Pz)  Ib5 $- b6(7P2- 3)i In [(l + p)1 
+ b,P( 1 - / A 2 )  (P2 - P2)L (3.11) 

where B = 3/[(1 -p), (1 + 2p)] and the constants b,, b,, b,, b,, b,, b,, b,, b,, which 
are functions of /3 alone, are given in Appendix A, Q 4. It can be verified by 
inspection that these solutions are well behaved except when ,8 = 0, 2 1, -+. 
Assume fn-l, fn-,, ..., f3 are analytic for 1 > ,u > p(0 < ,I3 < 1) and they satisfy 
(3.31, (3.4) and (3.5); then it is easily verified that Sa(p) is analytic in this same 
range and Pn(p = 1) = 0. Assume a series solution for y,@) about ,u = 1 of 
the form yn(,u) = a , ( l - , u ) + a , ( l - , ~ ) ~ +  .... 
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This solution formally satisfies (3.3) with y,(l) = 0 and a, =+= 0 (see Appendix A, 
$ 3  for the values of u, and uz). From the general theory of linear differential 
equations (Agnew 1942; Ince 1956) the series converges up to the nearest singular 
point of the differential equation, which in any case is no nearer p = 1 than p = 0. 
Using this y , (p) ,  the solution f,(p) is found from (3.7) and is analytic for 
1 2 p 2 p (0 < ,8 < 1). Solutions for f3 and f4 have been obtained numerically 
by Ackerberg (1962) for p = 0.866, and are plotted along with their first 
derivatives in figures 2 and 3. 
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FIGURE 3. fq(,u) andf;(,u) for ,!? = 0.866. 

After f,,, the fn’s seem to alternate in sign with f, > 0. Graphs of the skin 
friction and radial velocity along the axis have been plotted for p = 0.866 in 
figures 4 and 5. The different curves in each figure correspond to taking 3,4 ,  and 
5 terms in the asymptotic series $s, and i t  can be seen that at 5 = 2-0, the differ- 
ences are less than 6%. It is reasonable to suppose these values are fairly 
accurate provided > 2.0. 

The stream function of the Stokes solution has been plotted versus ,u for 
different values of 5 in figures 6 and 7 for /3 = 0.866. In  figure 6, four terms were 
retained in the stream function, whereas five terms were used in figure 7. In  
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E 
FIGURE 4. Skin friction using 3, 4, and 5 terms of $&) for ,4 = 0.866. 

0.0 1.0 2.0 3.0 40 5.0 6.0 7.0 8.0 9.0 10.0 

E 
FIGURE 5. Velocity on axis using 3, 4, and 5 terms of $&) for p = 0.866. 
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both figures, for > 2.0, the almost radial streamlines deviate toward the wall 
(see figure 8) as they are followed in from infinity. 

It is interesting to note a phenomenon similar to 'Whitehead's paradox ' 
(Proudman & Pearson 1957) for the case ,8 = 0. From (3.9), fo(,u) = p3(B = 3); 
however, solutions fn(p) (n > 0) cannot be found which satisfy the boundary 
conditions because J,(P = 0) = 0. It is possible that for P d 0 the Navier-Stokes 
equations might not have any solutions with purely radial flow at infinity. This 
conjecture is supported by experiments of Bond (1925) on wide-angled cones 
(a  2 go"), which were performed to verify certain theoretical deductions from 

E = O  

-, curved streamlines from Stokes solution $s (curvature is exaggerated). 
FIGURE 8. Deviation of streamlines from purely radial flow. ---, Purely radial flow; 

the first term of the Stokes solution. Using fo only, the expressions for the radial 
velocity and radial pressure gradient can be obtained from ( 3 . 2 ~ )  and 
Appendix A, 5 1, i.e. 

and 

(3.12) 

(3.13) 

Equation (3.13) predicts a reversal of the radial pressure gradient for 
6 > 6, = 54" 45' when a > 6,. For a > +a-, (3.12) predicts zero radial velocity 
at 8 = T - a, so that for a < $a- (P > - 8) the velocity near the wall is radially 
outward with converging flow near the axis, whereas for a > $a- the situation 
is reversed. 

Using a cone with a = in, Bond made radial veIocity measurements in the 
range 1 0 0 ~  < < < 1 0 0 0 ~  to determine the validity of (3.12). His plot of r2AzL,vs 8 
does not agree well with the theoretical curve, and photographs of the stream- 
lines indicate marked deviations from purely radial flow. Bond also performed 
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experiments with cones whose half angles were l l O o ,  141" and 160" to verify 
that a p p  < 0 along the walls. Although this was verified, Bond points out 
from his photographs that the flow field far from the apex is certainly not radial. 

4. The search for a core flow 
Near the apex an outer or core flow is anticipated with a boundary layer nea.r 

the wall to satisfy the no-slip condition. The core flow is not known a priori 
(unlike the wedge) and all likely solutions must be considered. For our purposes 
this can be accomplished by assuming the radial velocity of the core flow a t  the 
wall may be represented by a series expressed in powers (not necessarily integral) 
of the distance from the apex measured along the wall. A determination of the 
first term in the boundary-layer expansion requires the retention of the largest 
term in this series when r -+ 0. Thus, if U is the radial velocity of the core flow 
along the wall it is sufficient to assume Ucc rs (the proportionality factor may 
depend on Y ) .  

The boundary-layer equations in spherical polar co-ordinates may be found 
from the equations of continuity and momentum in $ 2  after a new variable 
'p = a - 8 (which measures the angle to a variable point from the wall) is intro- 
duced in place of 0. The transformed equations are 

a% vau 212 lap 
ar r a y  r par 

u =---  

a2u 2au 2~ 1 a2u cot(a-9)au 2 a v  2vcot(a-9) 
+ J )  -+ _--- +--- -+--- [ ar2 r ar r2 P a y 2  r2 a'p r2a(p r2 

and 
av vav  uv 1 ap u-+--+-=--- 
ar ray  r pray  

] * (4.3) 
a2v 2av  1 a2v cot(a-cp)av 2 a ~  2, + Y  -+--+--- ----- [ ar2 r ar r2arp2 r2 acp r2ay r2sin2(a-y) 

Define 6 as the boundary-layer thickness and assume the usual orders of magni- 
tude for boundary-layer theory, i.e. 

6 <  1, and 6+0 as v or ru/A+O, 

ulU = O(l) ,  r-lalaq = O(l/S), and a/ar and a2/ar2 = O(1). 

From two-dimensional boundary-layer theory we expect v = O(U6/r). If v is 
larger than this the retention of the dominant term in the continuity equation 
(4.1) as u+O yields av/ay = 0, and v cannot satisfy the boundary condition a t  
the wall except in the trivial case v = 0. (The subsequent introduction of a 
stream function makes further consideration of the continuity equation 
unnecessary.) 

Using this order of magnitude, an examination of each term in (4.2) as v+ 0, 
shows the largest terms on each side will be of the same order of magnitude if 
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Thus (4.2) becomes, upon retaining the largest terms, 

Using (4.4) in (4.3) makes all velocity terms of O( U26) or less. Therefore 

[Thus, the pressure does not vary across the boundary layer to lowest order.] 
The variation of pressure along the boundary layer is determined from the 

core flow solution a t  the wall, which is a streamline to first order for that motion. 
Thus, setting v = 0 and neglecting the viscous stress terms, (4.2) becomes 

where we have replaced u by U ,  the radial velocity in the core flow at the wall. 

Similar solutions 

Transforming the boundary-layer equation (4.5) to the independent variables 

up-- v- = - - - + - ( l - p 2 ) & -  [(1-p2)&$]. 

(&,PI yields 
au ( i - p 2 ) 4  au l a p  v2 a 
a t  5 ap P a &  At2 ap 

$ = A&mh{(p-P)/fl”) = Atm+), 

(4.8) 

Similar solutions can be found by assuming a stream function of the form 

(4.9) 

where we expect m,n 2 0. As usual in boundary-layer theory, the similarity 
variable was chosen so the co-ordinate normal to the wall is magnified by 
dividing it by a positive power of v. The velocity components in terms of this 
stream function are 

u = - ( v 2 / ~ 2 [ 2 )  a$/ap = - (VyA) t m - n - w  ( ), (4.10) 

and (4.11) 

Substituting these expressions in (4.8) and retaining only the largest part of the 
viscous stress term for n > 0 when t - + O  we obtain 

5 2 m - 2 n - 1 [(m - n - 2) ht2 - mhh”] = - (A2c4/pv4) app& - (1  - P2) &m--3nh”’. (4. 12) 

Let the radial velocity in the core flow a t  the wall be given by 

u = - (EV2/A) E“. (4.13) 

(The factor v2 is necessary if the solution is of the form (2.21) as shown.) Negative 
values of E cannot be excluded from consideration for it is possible that the radial 
velocity in the core flow could be negative near the axis and positive at the wall. 
The only indication so far that this is not the case is the deviation of the stream- 
lines toward the wall for small & as predicted by the Stokes solution. Combining 

-p-’ap/a& = (E2v4/A2) ~ & ~ ~ - - 1 .  (4.14) 
(4.13) with (4.7) yields 
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With this substitution (4.12) becomes 

pm-2n-- l [ (m - n - 2 )  v2 - mhw] = E2sp+3 - (1 - P 2 )  p--3nh’. (4.15) 

When m = 4(s+3) and n = -g(s+1) (4.16) 

(4.15) becomes an ordinary differential equation in 7,  i.e. 

sh” - &(s + 3) hh” = E’s - (1 - /3’) h”. (4.17) 

The velocity components must vanish at p = P; hence, 

h(0) = h’(0) = 0. (4.18) 

In  addition, the radial velocity of the boundary-layer solution must (for 
7 3 0 0 )  asymptote to the radial velocity in the core flow at the wall. Using (4.10) 
and (4.13) and noting m-n-2  = s, from (4.16), this condition is 

u N - (Ev2/A) 5“ or h’(c0) = E. (4.19) 

7* = [ I~+31  IE1/2(1-@’)]&~, (4.20) 

and F(T*) = (signE)[ Is+31/2(1-P2) IEJ]*h(7). (4.31) 
(4.17) becomes 

(4.22) 

and F” - FP” + P ’ ( P  - 1) = 0 when sign [(s + 3) El > 0, (4.23) 

where /3‘ = 2s/(s + 3). The boundary conditions (4.18) and (4.19) require 

When s + - 3, put 

F” + PP” -/I’(P’’ - 1) = 0 when sign [ (s + 3) El < 0, 

F(0)  = F’(0) = 0, and P‘(c0) = 1. (4.24 a, b) 

When s = - 3, put 7* = [3 IEl/(l -/32)]&7, (4.25) 

P(T*) = (signE) [3/(1 -P2) IEI]$h(7), (4.26) 
and (4.17) becomes 

P” +F”- 1 = 0 when signE < 0, (4.27) 

and F -F’’+l = 0 when signE > 0, (4.28) 

with the same boundary conditions (4.24a, b). 
Solutions of (4.22) with the boundary conditions (4.24a, b) have been studied 

by Hartree (1937) and Coppel (1960). Goldstein (1965) considered solutions of 
(4.23), (4.27) and (4.28) with the same boundary conditions in connexion with 
‘ backward boundary layers ’. He pointed out that in two-dimensional boundary- 
layer theory the asymptotic condition (4.24b) must be satisfied with an expo- 
nentially small error. Here we assume this condition must also be satisfied for 
axisymmetric boundary layers. Henceforth, reference to ‘ solutions ’ of (4.22), 
(4.23), (4.27) and (4.28) subject to the boundary conditions (4.24a, b) will imply 
(4.243) is satisfied with an exponentially small error unless otherwise stated. 
Using Goldstein’s results, these solutions can be summarized as follows: 

The case E > 0 

For s 2 0 there are no solutions. For - 3 < s < 0 solutions can be found which 
satisfy (4.243) with an algebraically small error. For s = - 3, two solutions are 
possible depending on whether P”(O)$O. For all s < -3 real solutions exist 
which are unique when P ( 0 )  > 0. 
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The case E < 0 

For s > -0.2712 real solutions exist which are unique with P"(0) > 0. When 
s = - 0.2712, P"(0) = 0. For - 3 < s < - 0.2712 no real solutions exist, and for 
s 6 - 3  no solutions exist. 

The possibility of potential sink flow near the apex must now be excluded 
from consideration, for that case (which corresponds to E > 0, s = -2 )  is 
characterized by algebraic decay. In  fact, the exponential smallness requirement 
can only be satisfied when s < - 3 for E > 0, or s > -0.2712 for E < 0. If any 
portion of the flux is carried into the apex by the core flow the cases with E < 0 
can also be excluded from consideration, for a non-zero term of 0( l / r2 )  is neces- 
saryin U ,  and this would dominate the assumedleading term Ucc rs (s 2 - 0.2712) 
near T = 0. 

The correspondence between the exponents in the velocities at the edge of the 
boundary layer in two dimensions (where u = cxm, cf. Goldstein 1938, p. 140) 
and in axisymmetric flow (4.13) is 

This follows from setting 
s = 3m. (4.29) 

p' = 2s/(s + 3) = p = 2m/(m + l ) ,  

or from Mangler's transformation (Pai 1956). The case m = - 1 in two dimensions 
gives the boundary-layer solution in a wedge when u+O.  From (4.29), the 
axisymmetric analogue is s = - 3, for which 

U = - Ev2/At3. (4.30) 

The weakest singularity at the apex which satisfies the exponential smallness 
requirement is s = - 3. In  problems where it is necessary to choose a singularity 
to specify a solution uniquely, it is often found that the weakest one gives the 
best description of the physical facts. Therefore, we assume (4.30) is the correct 
lowest-order term in the radial velocity of the core flow at the wall. Note 
U = O( l / v )  and 6 = O(v) which is not usually the case in boundary-layer theory. 

This singularity seems to violate the condition of constant flux crossing every 
section of the cone. In  the next section it will be shown that this term gives rise 
t o  a vortex motion with closed streamlines which does not contribute to the 
flux. The flux condition must be imposed on higher-order terms. 

5. The core flow near the apex 

order) is 
A core flow expansion with the correct radial velocity at  the wall (to first 

$(t, p) N $ c ( t ,  = A Ek tn-lgn(p). (5.1) 
n=O 

The corresponding velocity components are 

and 

(5.2a) 

(5 .2b)  
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For vc to be finite on the axis i t  is necessary that 

g,(l) = 0 for all n except n = 1. (5.3) 

The value of gl ( l )  is found by noting that the core flow must satisfy the 
boundary condition at  the cone axis. Equation (2.15) and the relations (5.3) 
require 

If (5.1) is substituted in (2.17) and coefficients of like powers of 6 are equated 
to zero, a set of third-order ordinary differential equations is obtained for the 
g.n7s. Each equation has an immediate first integral, which is for n 2 0 

(5.4) Sl(1) = 1. 

(1  -p2) 9: + (n- 1) (n - 2 )  gn-5c( l  -p2) go"gn 

The general form of gn and the pressure are given in Appendix B. The 
constants c and c, (n > 0) are arbitrary with co = - 4c, and can be related to the 
vorticity distribution in the core flow. 

5.1. 9o(P) 

(1-p2)g;+2g0 = c(l--p2)g05. 
The equation for go(p) is 

In  accordance with the general theory of a core and boundary layer, the boundary 
is a streamline for the leading term in the core solution. Hence, go(,8) = 0. With 

90(1) = SO(P) = 07 (5.7) 

go(p) does not contribute to the flux of fluid through the cone, and very near the 
apex a motion with closed streamlines is expected. 

Solutions of (5.6) with the boundary conditions (5.7) may be studied by con- 
sidering the cases c % 0. When c > 0, the series solution about p = 1 is com- 
posed only of positive terms for p < 1. Thus, once started from zero, the solution 
increases monotonically and cannot satisfy the boundary condition go(/3) = 0. 
When c = 0, the only solution with go( 1) = 0 is go(,u) = C( 1 -pz), and this also 
cannot satisfy gO(p) = 0. When c < 0, go" and go are of opposite signs for lpl < 1, 
and the solution oscillates in this range. 

Define G0(p) = ( -c)igo(,u). The equation and boundary conditions for G,(p) 
are 

and 

(1 -p2)  Gg + 2G0 = - ( I  -p2) G;, 

Go(1) = Go(,8) = 0. 

(5.8 a )  

( 5 . 8 b )  

It is sufficient to consider Go(p) 2 0 in the neighbourhood of p 6 1 because 
(5.8a, b)  are invariant when G is replaced by - G. In  this case Gh( 1) < 0, and 
there is a value of Gh( 1) for which the first zero of Go(p) (the zero nearest p = 1) 
is at p = /3, so that Go@) > 0 for /5' -= p < 1. When Gh(1) is less than this value, 
Go(p) oscillates more rapidly and many values of Gh(1) can be found for which 
Go(P) = 0 [see figure 91. In  B sense (5.8a, b )  define an eigenvalue problem where 
the eigenvalues correspond to the initial slopes Gh(1). We postulate that the 
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simplest of these solutions occurs in nature, i.e. the one with the largest Gi(1). 
The radial velocity from this solution has one inflexion point [see figure 10 
noting that to first order u, = - (v2/A13) ( - c)-i G;(p)] ,  whereas the more com- 
plicated solutions have one less inflexion point than the number of times they 
are zero in the interval p < ,LA < 1. It is likely that the simplest solution is the 
most stable. 

FIGURE 9. Variation of G,,(p) with Gi(1). 

A series solution for g,(,u) about p = p can be written 

m= a, 

m=O 
go@) = s aom(P--Am, (5.9) 

where a,, = 0. In  terms of Go(p)  and sol, the solution for g,(p) is 

go(Pu) = aOlGo(,LA)/G;(P)> (5.10) 

and since Go@) and G;(/3) have the same sign, the sign of Go(,u) is irrelevant. 
The constant c in (5 .5 )  is related to a,, by 

Numerically computed values of G,(p) and G;(p) have been obtained by 
Ackerberg (1962) and are plotted in figure 10 for /3 = 0.866. 

From (5.2a), the radial velocity at the wall to first order is 

u,(C, P) = - aOl v2/AC3. (5.11) 

It is necessary that a,ol > 0 or the boundary-layer equation has no solution. 
This condition specifies the direction in which the fluid particles in the closed 
streamline region of the flow are moving, and this movement is in accordance 
with the deviation of the streamlines toward the wall predicted by the Stokes 
solution for small 6 (cf. figures 8 and 11). 

The streamlines due to Ag,(p)/C are closed and it might be expected that 
Batchelor’s theorem (1956) is applicable so that the vorticity is proportional to 
the distance from the axis of symmetry. The theorem cannot be applied in this 
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case, however, because when v -+ 0 all streamlines of finite value extend from 
r = 0 to r -+ co and by choosing an intermediate value of r and allowing v -+ 0 
every streamline passes infinitesimally close to the axis and the wall, which is 
a singular surface. Thus, the shortest distance from any streamline to a singular 
surface tends to zero with v. 
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FIGURE 10. G,(p) and G&) for p = 0.866. 

5.3. 9l(Pc) 

g ;  - 5cg:g1 = clg& 
The equation for gl(,u) is 

By inspection, a particular solution is 

(5.12) 

g p  = - C 1 / 5 C .  (5.13) 

Since -cg$(p) = Gg(p),  the homogeneous equation for g, can be written 

9’; + 5Gtg1 = 0. (5.14) 
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Two independent compIementary solutions of this equation will be denoted 
by Gl1(p) and G12(,u). They satisfy the boundary conditions: 

Gll(l) = 0; Gi1(1) = 1, 

and G12(l) = 1;  Gi2(1) = 0. 

The Wronskian of these solutions is 

(5.15) 

(5.16) 

Gil(P) G12(P) - G;2(P) Gll(P) = 1. (5.17) 

In  the neighbourhood of ,u = P, the solution for gl(,u) can be written 

(5.18) 

5-0 

FIGURE 11. Vortex motion near apex. 

In  terms of Gll(,u), G12(p), alo, and all, the solution of (5.12) with the right-hand 
side included and gl(l)  = 1 is 

9l(P) = [{I - a10 + a11G11(P)W - G;1(/3)11[1+ G;2(P) Gll(P) - G12(P)I 

+ [a lo+al lGl2(~)Gl l (P~ + (1 -a1o)G12(lU)I, (5.19) 

for G;,(P) $- 1. When G;,(p) = 1, a solution for gl(,u) can be found only when 
a,, = 1 +al, Gll(P); it  is 

S l (P)  = i? + [all - (1 - C) G;2(P)l Gll(P) + (1 - C) G12(P), (5.20) 

where 

It should be noted that in either case two arbitrary constants appear in the 
solution: a10 and all when G;,(P) + 1, and all and a16 when Gi1(p) = 1. Numeri- 
cally computed values of Gll(p), G;,(p), G12(p), and Gi2(p) have been found by 
Ackerberg (1962), and are plotted in figures 13 and 13. 

c" = Pal, + [ I +  "11 G,l(P)l [G;(P)l4I/[G;(P)l4. 

5 Fluid Mech. 21 
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For G;,(P) + 1, the constant c1 in (5.12) is 

c1 = 5[GA(P)bol14 [1 +all G d P )  -alo G;dP)l/[l - Gll(P)l, (5.21) 

and when G;,(P) = 1, 

c1 = (5 /& Pal, + [ I +  all Gll(P)I [Gi(P)l4Ia (5.22) 

5.3- 92(P) 
The equation for gz(p)  is 

The right-hand side of this equation can be written in terms of the solutions 
Go@), Gll(p), and G12(p), and particular integrals can be found which vanish for 
p = 1. The complementary solutions of (5.23) are the same as those for gl(p). 
However, only an arbitrary multiple of Gll(p) can be added to any particular 
integral which vanishes for ,u = 1, because (5.3) requires g2(1) = 0. 

Therefore, barring exceptional circumstances, the solution for g2(p)  involves 
two arbitrary constants which have been introduced as c2 and the arbitrary 
multiple of Gll(p). In  the neighbourhood of p = P, the solution for g2(p) can 

92(P) = c % m ( P - P ) m ,  (5.24) 

and the two arbitrary constants can be related to a20, ual and the constants 
appearing in previous gn’s. 

be written m= 00 

m=O 

5.4. Complementary solutions of (5.5) 

The solutions of (5.5) will now be investigated for n > 2. In  general g, can be 
written as a series solution about p = P, 

m= 00 

(5.25) 

The homogeneous equation (5 .5 ) ,  

(1 -p2)gi + (n - 1) (n - 2 )  g, - 5c(i -p2) gig, = 0, (5.26) 

has for n > 0 a series solution about p = 1 of the form 
S = W  

yyqp) = s As(l -p)S+l. 
s=O 

(5.27) 

When n = 1 or 2,  p = 1 is not a singular point of the differential equation, and 
a second independent solution is 

s=m 
y“-*Z’(p) = c Ai(1 -p)S. 

s=O 
(5.28) 

When n =I= 1 or 2, p = 1 is a singular point and the second independent solution is 

(5.29) 
s=O 

where the constants Ds are related t o  the arbitrary constant B. 
5-2 
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5.5. Particular solutions 

From the expression for v, in (5 .2b ) ,  g , (p ) / ( l  -p)+ must be finite a t  p = 1 for 
n + 1. If g,(p) is analytic near p = 1 ,  then a s p +  1 ,  

g,(p) = O(1 -p)  for n =k 1, (5.30) 

and, from (B 3) in Appendix B, 
O(1)  for 2 4 n < 5, 

0 [ ( 1 - p ) n - 6 ]  for n > 6. 
Therefore, 

(5.31 a) 

(5.31 6 )  

1-p2 /" 0 [ ( 1 - p ) 7 - n ]  for 3 < n 4 5, (5 .32a)  - P I l  s r 5  (5.32 b)  dp = { O ( 1 - p )  for n 2 6. 

A particular solution corresponding to this integral term [with c, taken as 
zero in (5 .5) ]  can be found for all n which is zero and analytic in the neighbour- 
h o o d ~ f p  = 1. 

The second term on the right-hand side of (5.5) has the following behaviour 
near p = 1 :  

c,( l  -p2)/g;-"p) = O [ ( l  -p)-"f6].  (5.33) 

Particular solutions arising from this term which are zero and analytic in the 
neighbourhood of p = 1 can be found only when n < 6. For n 2 6, the c,'s must 
be zero to satisfy the boundary condition g,( 1 )  = 0. (The vorticity is not bounded 
on the axis unless the c,'s are chosen in this way.) 

The results for the gn's can be summarized as follows: For n = 0, only one 
arbitrary constant a,, is introduced. For n = 1 ,  the solution involves two 
arbitrary constants, al, and all. For 2 6 n < 5 the solutions g,(p) which are 
zero and analytic in the neighbourhood of p = 1 introduce two arbitrary con- 
stants for each n. These constants are c ,  and the arbitrary multiplier of the 
complementary solution yy)(p). For n 2 6, only one arbitrary constant is intro- 
duced for each n, since c, must be zero. This single constant is the arbitrary 
multiplier of the complementary solution y~")(p). In  all cases (barring exceptional 
circumstances) the arbitrary constants can be related to some combination of 
a,, and a,, for 2 < n < 5, and a,, for n 2 6. In  the next section it will be shown 
that only six of these constants are independent. 

6. The boundary-layer solution 

expansion near the apex of the form 
The results of 5 4 [see (4.9) and (4.16) with s = - 31 suggest a boundary-layer 

@(&,p) $b-1(577) = A n5k 5nhn(7), 
n=O 

where 7 = (p  - ,5)/(. The corresponding velocity components are 

and 
1 n= k 

(6.3) 
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Substituting (6 .1)  in (2.17) after it has been transformed to independent 
variables (t, T ) ,  and equating coefficients of like powers oT t to zero yields a set 
of ordinary differential equations for the hn's. The equation for h, is 

W 2 h F  - 6hA hi = 0. 

u 2 h ~ + ( n - 6 ) h A h ~ - 6 h , " h ~ - n h [ h ,  = Zn(7,ho, h,, ..., h,-,), 

(6 .4)  

[This is (4.17) differentiated once with s = - 3.1 The equation for h, (n > 0) is 

(6.5) 

where Zn depends on r and the h,,'s up to hn-,. The general form of Zn is given 
in Appendix C ,  0 1. 

The no-slip conditions a t  the wall are satisfied if 

hA(0) = 0 for n 0, (6 .6a )  

and h,(O) = 0 for n > 0. (6 .6b)  

When n = 0, (2.18) requires ho(0) = 0. (6 .7)  

In  addition, the boundary-layer solution (as T + co) must merge with the core 
solution (as p +p) with an exponentially small error. Mathematically this 
requires that the boundary-layer expansion asymptote (when T-+CO) to the 
outer solution rearranged in powers of fl  and T .  Using (5 .1)  and (5 .25) ,  the core 
expansion can be written 

m=m m = m  

Substituting p-/3 = (T,  and using the fact that a,, = go(/3) = 0, (6 .8)  becomes 

n=m m=m n=m m=n+l 

n = O  m=O n=O m=O 
$ c ( < , ~ )  = A C u ~ ~ ~ ~ + ~ - ~ T ~  = A C tn Z an+l-m,mrm- (6.9) 

From (6 .1) ,  the merging condition is satisfied if 
m=n+l 

$b-dfl, 7 )  = A C Ph&) N A S tn X an+l--m,mTm. (6.10) 
n=O n=O m=O 

Equating coefficients of similar powers of fl  we finally obtain 

m=n+l 

m=O 
hn(7) N 2 an+l-m,mrm, 

where the error in (6.11) must be exponentially small. With n = 0, 

(6.11) 

hd7) N a017 + %07 (6.12) 

and to the first order, the radial velocity a t  the edge of the boundary layer is 
ub-,(fl,m) = - (v2/At3)hA(m) = -v2ao, /At3,  as i t  should be, and a,, must be 
positive. 

The integration of (6 .4 )  yields two solutions, whose difference depends on 
whether h,"(O)zO. When hl;(O) > 0, the radial velocity in the boundary layer 
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decreases monotonically from zero a t  the wall to its value at  the edge of the 
boundary layer (see figure 14 (a)). This solution is 

(6.13) 

For h:(O) < 0, the radial velocity near the boundary is positive. As T increases, 
this velocity falls to zero and reverses direction so as to become converging (see 
figure 14 ( b ) ) .  This solution is 

hb2)(7) = a , ,~+ ( 6 ~ ~ 0 1 ) ' ~  tanh [ - (&,,)QT/w+ tanh-lJ$]- 2w(a,,)&. (6.14) 

h i l ) (~ )  = u,,T- (6uO1)'~ tanh [(&L,,)~T/U + tanh-l Jg] + 2w(a,,)f.-f 

h;, (0) > 0 ha (0) < 0 

L I (to first order) 

Flow away from apex 

(4 (b)  

FIGURE 14. 
hb(0) > 0. 

(a)  Radial velocity profile of lowest-order boundary-layer solution when 
( b )  Radial velocity profile of lowest-order boundary-layer solution when 

h;(O) < 0. 

Both solutions satisfy (6.13) with an exponentially small error. However, when 
hg(0) < 0, the skin friction near the apex is negative (a questionable result 
physically) and it is not clear how (6.14) could join with the Stokes solution 
near thew all for a < go".$ For these reasons, (6.13) will be taken as the 
correct boundary-layer solution and hereafter h,  will refer to hi]-). Starting with 
the boundary-layer equations an equivalent solution is possible for the converging 
flow in a wedge and is also rejected. 

From (6.13), the asymptotic form of h0(7) is 

h0(7) N ~ , , ~ + ~ i ~ ( ~ ~ ~ ) f ( 2 - ~ 6 ) ,  when T+CO. (6.15) 

Comparison of (6.15) with (6.12) determines a,, in terms of a,,, i.e. 

al0 = w(a,,)J (3  - 46). (6.16) 

a,, can be related to the displacement thickness of the lowest-order boundary- 
layer solution. 

t Positive square roots are to be taken throughout this section. 
See the discussion following (3.13). 
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6.1. Complementary solutions of (6.5) 

The coefficients of (6.5) are analytic for 0 < 7 ,< co; thus, a series solution about 
7 = 0 yields the four linearly independent complementary solutions 

y1 = 1 + b 1 0 ~ 4 + b 1 1 ~ 5 +  . . .+b1m7m+4+. . . ,  (6.17 a )  
y2  = 7+b2074+b2175f  ... +b2m7mf4+  ..., (6.17 b )  

y3 = 7 2 + b 3 0 7 4 + b 3 1 7 5 +  ... +b3m7m+4+ ..., ( 6 . 1 7 ~ )  

y4 = 73+b4074+b4175i -  ... +b4m7m+4+ .... (6.17d) 

The asymptotic behaviour of these solutions for r+co can be found from 
(6.5) using asymptotic values for the coefficients, i.e. 

02yg  + (n - 6 )  aol y k  = 0, (6.18) 

where we have used (6.15) and m = 1,2,3,4.  This equation has solutions 

Ym = cm1 + ~ m 2 7 + ~ m 3 e x ~  [{(6-n)aOlI '7/~1 +cm4ex~ [ - { ( 6 - n ) a o , I ' ~ / ~ I  
for n < 6,  (6.19a) 

for n = 6,  (6.19b) 

for n > 6,  ( 6 . 1 9 ~ )  

~m = dm, + dm, 7 + dm37, + dm4 73 

yPn = em, + em27 + em3 cos [{(n - 6 )  a o l } ~ 7 / w ]  + em4 sin [{(n - 6 )  aol}47/w] 

where em,, dmi, and em, are constants which depend on n. 
If cm3 + 0 for m = 3,  4 when n < 6 ,  the linear combination 

Yn(7) = ~ 4 3 ~ 3 ( 7 )  - ~ 3 3 ~ 4 ( 7 )  (n < 61, (6.20a) 

satisfies Y,(O) = YA(0) = 0 ,  (6.20 b)  

and as r+co Y,(7) - Cl+C,~+O[exp-{(6-n)aol}~~/w], ( 6 . 2 0 ~ )  

where Cl = c43c31 - c33c41 and C, = c43c32 - Any multiple of Y, will satisfy 
(6.20b) and have an asymptotic expansion similar to ( 6 . 2 0 ~ )  with different 
constants, C; and C;. To define uniquely such a multiple in terms of Y,, a value 
for Cl or C; (say C;) may be chosen.? 

6.2. General solutions 

If we assume h,, h,, ..., h,-, satisfy (6.11) it  is not difficult to show that @, 
asymptotes (as ~ + c o )  to a polynomial of degree < n- 1 for n + 6, and a poly- 
nomial of degree 3 when n = 6 (Appendix C ,  $ 2 ) .  These results will be used 
to show h, satisfies (6.11), thereby establishing (6.11) for all n by induction. 
In Appendix C, $2, particular integrals of (6.5) are found for large 7 which 
asymptote a polynomial of degree < n + 1;  however, in general these solutions 
will not satisfy (6.6a, b).  To find solutions which satisfy both conditions deter- 
mine any particular integral, A,, of (6.5) with 

R,(O) = RA(0) = 0. (6.21 a )  

t If c, = c4$ = 0 in ( 6 . 1 9 ~ ~ )  Y ,  can be constructed by taking any linear combination 
of y3 and ya. In tliis case it is necessary to choose values for C,  and G,  to define Y,  uniquely. 
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From the above discussion A, must asymptote a polynomial of degree < n + 1 
plus any terms arising from the complementary solutions ym [see (6.19a, b,c)].  
Thus, for n < 6 

A,(7) N P,(7) +glexp  [ ( ( 6 - n ) a 0 , } 4 7 / ~ ]  + g 2 e x p  [ - { ( 6 - n ) a o , ) ~ ~ / ~ 1 ,  
(6.21 b )  

where Pn(7) is a polynomial of degree < n+ 1, and 9, and 9, are constants. 
Another particular integral with no growing exponential term and which 
satisfies (6.21 a )  is 

zn(7) = An(7) - (9 , /cm3) y,(7) for m = 3 or 4 (n < 6 ) ,  (6.22a) 

and for large 7,Z, asymptotes to g,(7) where 

gn(7) = ~ n ( ~ ) - ~ l ( c , 1 + c , 2 ~ ) / c , 3  for m = 3 or 4. (6.226) 

For n < 6 ,  the general solution of (6.5) which satisfies (6.6a, b )  and (6.11) with 
an exponentially small error is 

hR(7) = Zn(7) + KYn(7) (n < 6 ) ,  (6.23) 

where h7 is an arbitrary constant. As 7+00 

hJ7) N P,(T) + K(C, + C27) + O[exp - ( ( 6  - n) a,,)* 7/w].-f (6.24) 

When a few terms of (6.11) are written out, 

h , ( ~ )  N a,,,,, + an17 + a,,+ + . . . + a,,,+,7n+1, (6.25) 

and it is evident that a value for any one of the constants a,,,,,, an,, or K must 
be chosen to uniquely specify h,. We choose a,, as the arbitrary constant and 
a,,,,, and K will be expressible in terms of a,, and the arbitrary constants 
introduced for previous n.1 

When n = 6 ,  the ym’s have no exponentially large terms when 7+00 (6.196). 
In  this case the particular integrals A, asymptote to a polynomial of degree < 7 ,  
and the general solution for h, is 

h6(7) = &(7) + K,y3(7) + K,y4(7) for n = 6 ,  (6.26a) 

where K ,  and K ,  are arbitrary Constants. Thus 

hg(7) N P6(7) +R,[d3,+d,,7+d3372+d3473]+hT2[d41fd427+d4372+d4473]. 

(6.266) 

h&) N a , , + a , , ~ + a ~ , ~ ~ + a ~ ~ ~ ~ +  ... + a , , ~ ~ ,  (6.27) 

and it can be seen that values for any two of the constants a7,, a,,, aS2, a43, K,, K ,  
must be chosen to specify h, uniquely. We choose a5, and a43 as the arbitrary 
constants and the others are expressible in terms of these and the arbitrary 
constants introduced for previous n. 

From (6.11) we have, for n = 6 ,  

t C, and C, are known from ( 6 . 2 0 ~ )  so that K is the only unknown constant in (6.24). 
$ If c33 = cd3 = 0 in (6.19a), a,,,,, and a,, must both be specified to determine h, 

uniquely. 
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Hence, for n < 6 ,  the arbitrary constants introduced in the boundary-layer 
solutions are a,,, a,,, a2,, a3,, a,,, a,,, a,,, a52. From $ 5  we recall that for 2 6 n < 5, 
the solutions for g,(,u) introduced two arbitrary constants for each n, which were 
chosen as a,, and an,. Therefore, a43 can be expressed in terms of a40 and a41 
from g4, and since a4, can be expressed in terms of a,, (n < 4 )  using h,, a,, can be 
expressed in terms of a,, (n < 4) .  Similarly, can be expressed in terms of a51 
and a5, from g,, and a,, can be expressed in terms of a,, (n < 5)  from h,, SO that 

can be expressed in terms of a,, (n < 5) .  Thus, for n < 6 ,  six arbitrary con- 
stants are introduced; they are a,,, a,,, a2,, a3,, a41, ~ 5 1 .  

When n > 6 ,  the solutions A, asymptote to a polynomial of degree < n+ 1 
plus oscillatory terms. Another particular integral 2, which satisfies (6.21 a,) 
and has no oscillatory terms when 7 + co can be found by adding fixed multiples 
of y, and y4 to A,. A linear combination of y3 and y, [equivalent to Y,, see 
(6.20a, b ,c ) ]  can no longer be found which asymptotes to a linear function plus 
exponentially small terms. Thus, 

h,(7) = Z,(T) for n > 6 ,  (6.28) 

and no arbitrary constants are introduced in these solutions except those intro- 
duced for n < 6. Therefore, the boundary-layer and core-flow expansions 
contain only six unknown constants, and all other anr,%’s (n,m > 0 )  can be 
expressed in terms of these. 

These methods of construction will be used for finding h,. 

6.3. h, 

W2hy - 5hih; - 6h,” hi - h: h, = 2/?Thg + 4/?h:. 

The equation for h, is 

(6.29) 

It is convenient to  express h, in terms of universal functions. Let 

7‘ = (a&/w)7. (6.30) 

Then from (6.13) h o ( ~ )  = (aol)*wHo(7’)3 (6.31) 

where H0(7’) = 7’ - J6 tanh [ J ~ T ’  + tanh-lJg] + 2 .  (6.32) 

Define 2/?H1(7’) = h1(7). (6.33) 

Substituting these expressions in (6.39) and dropping the primes, an equation 
for H, is obtained: 

H p  - 5HAH; - 6Hi  H i -  H: H, = 7Hkv+ 2H;j’. (6.34) 

The homogeneous boundary conditions h,(O) = hi(0) = 0 apply to H, as well. 
The condition for 7 -+ co is found from (6.11) by setting n = 1 : 

h1(7) N a2, + a117 + a0272. (6.35) 

By definition ao2 = +g:(p).  From (5.6) and (5.7) g:(P) = 0. Therefore, using (6.30) 

H1(7) N azoPP + wa117/2P(aoiP- (6.36) and (6.33) 

Note that it is unnecessary to use the properties of g,(,u) to deduce ao2 =- 0. This 
follows from the asymptotic behaviour of any particular integral of (6.34). 
Other checks of this form occur for n > 1. 
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They are 
The solution for h, can be expressed in terms of solutions to three problems. 

1. ~ 2 - 5 H h ~ i - 6 H : y A - H t ~ ~  = 0, (6.37 a )  
(6.37b) 

y i ( 0 )  = 1. ( 6 . 3 7 ~ )  

(6.38a) 

(6.383) 

Y t ( 0 )  = 1. ( 6 . 3 8 ~ )  

Y3(0)  = YA(0) = Y"0) = 0, 

y2- - 5Hh y ;  - 6Hb y i  - Hij' ya  = 0, 

Y 4 P )  = y m  = y m  = 0, 

2 .  

These solutions are simple multiples of y3 and y4 discussed previously. 

3. A i V - 5 H ' f l - 6 H " A t  0 1  0 1- H t A  1 -  - rH$'+2H;j', (6.39 a )  

R,(O) = A;(O) = 0, (6.39 b )  

Ar(0) = 0 ;  nli(0) = 1; AF(0) = 2Hij'(O) = - 6. ( 6 . 3 9 ~ )  

Any other particular integral satisfying (6.398) would suffice in place of A,. 
The asymptotic representations of y3,  y4,  and A, (as r+co) will all contain 
multiples of 1,  r, ed57, e - 4 5 7 .  

Y, is found by taking a linear combination of y3 and y4 which has no growing 

exponential term, i.e. q(7) = Y3(7) + &4(7), (6.40 a )  
and Yl(7) - e1+e2r+e4e-d57. (6.40 b )  

A multiple of y3 is added to A, so the combination has no growing exponential 
term ( y4 could be used instead of y3) : 

(6.41a) 

(6 .4 lb )  
21(7) = Al(7) + OY3(7)7 

Z1(r)  - 6, + 6,r + 6, e-+j7. 
H, is found by adding an arbitrary multiple of Y, to 2,) or 

and as r-+m 

This must coincide with (6.36); hence 

Hl(7) = ~lq(7) + 4 ( 7 ) ,  

H,(T) - y1 el + 6, + (71 e2 + 62) 7 + O(e-d5 ') . 
(6.42 a )  
(6.43 b )  

and 

(6.43) 

(6.44) 

(6.43) relates the arbitrary multiplier of Y1(7) to a,, and a,,, and (6.44) expresses 
a20 in terms of a,, (n < 2).  The constants el, e,, a,, 6, are related to the known 
solutions Y, and 8, in the following ways: 

el = lim [Y,(C)- Y;(.o)C], 

8, = lim [Z,(<) - Zi(co) {I, 

E, = Y;(co) 

6, = Z;(co). 
c-.m 

C+.o 
and 

Finally, the solution for hl(r) is 

h1(7) = [ ( w a , , a ~ ~ -  s/~s,)/s,I Y,(.$, r / w )  + 2pz,(atl r /o).  (6  45)  
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6.4. Xummary 

The results of this section can be summarized as follows. The boundary-layer 
and core-flow expansions which are valid for < - to  involve six undetermined 
constants which are taken to be a,,,, all, a2,, a3,, a4,, as,. All other anm’s can be 
expressed in terms of these six from relationships among the a,,’s through the 
g,’s and h,’s. 

7. Discussion 
The determination of the flow near the apex requires values for the six arbitrary 

constants in the core and boundary-layer expansions. Our analysis does not 
restrict these values except for the requirement a,, > 0. By assumption, the 
expansions found here (for small and large 6) are valid asymptotically as [- to  
and <+co, and it is natural to require these solutions to agree numerically in 
any region where their validities overlap, if such regions exist. In  $ 3  a reference 
to figures 4 and 5 indicated that five terms of the Stokes solution could be used 
to give accurate results for 6 > 2.0. Classical boundary-layer theory, however, 
is valid for Reynolds numbers of the order of lo2, i.e. < = O(10-2). Because of 
the large difference in these values and the striking change in flow character, it  
is unlikely that any accurate determination of the unknown constants could be 
obtained by numerically joining one or two terms of each expansion near 6 = 2-0. 
In  fact, such an attempt by Ackerberg (1962) failed. 

Certain questions of theoretical interest warrant further investigation. In  
particular, are the boundary conditions a t  infinity well posed for cones whose 
half angles equal or exceed go”, and do the boundary-layer solutions for s < - 3 
represent possible solutions in the neighbourhood of the apex? 

This paper is a revised version of a Ph.D. thesis presented to Harvard Uni- 
versity in December 1962. The author is indebted to Prof, Sydney Goldstein for 
suggesting this problem and for his generous help throughout the investigation. 

The research was supported initially by the National Science Foundation 
(1958-59) and later by the U.S. Office of Naval Research under Contract 
NONR-1866(34). The final revision and preparation of this paper were supported 
by the Air Force Office of Scientific Research Grant No. AF-AFOSR-1-63. 
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2P - x (n- 1 -s)fn-l-s [s(s+ ;)ti+ ( 1  -p2)f:  +s(s + 1)  vf5] (n 2 1).  

(A2) 
The pressure p ,  calculated from the Stokes solution stream function $&, p) is 

s=n-1 

s=o 

(A31 

where p ,  is the pressure at infinity. Unspecified arguments are a t  a general 
point p. 

A.2. Properties of Jn(/3) 
From definitions in 3 3, 

Jn = Wn WA+2 - WA Wn+2, 
and w; = P,, 
W, satisfies the differential equation 

(1 -p2)  W:+n(n+ 1 )  W, = 0. (A 6) 
Combining (A 5) and (A 6) : 

( 1 - i h 2 )  PA w = -  (n =!= 0). n(n+ 1)  n 

(A 4) can be written for n + 0: 

The following identities are known for Legendre Polynomials (Whittaker & 
Watson 1961): (n + 1) P,+l - (2n + 1) pPn + nPnV1 = 0, (a )  

nP, -,UP; + PA-l = 0,  (b)  
(n + 1)  P, - P;+l +,UP; = 0, (4 

and PA+l-PA-,-(2n+1)Pn = 0. (4 
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It is desirable to express P,+2 and PA+2 in terms of P, and PA. Replace n by 
n + 1 in ( 6 )  and substitute for PA+l from (c) to obtain 

Pn+l= pPn-{(1 -p2)/(n+ ')}PA* (4 

= PA[1-(2n+3)(1-p2)/(n+ 1)]+(3n+3)pPn. (A 9) 

In ( d )  replace n by n + 1 and substitute for P,+l from ( e ) :  

In (a)  replace n by n + 1 and substitute for P,+l from (e ) :  

(n+ 2)  P,+2 = Pn[(2n+ 3 ) p 2 -  (n  + l ) ]  - {(2n+ 3)/(n+ l ) } p ( l  -p2) PA. (A 10) 

Substitute (A 9) and (A 10) into (A 5 )  for Pn+z and PA+2 to obtain for n =I= 0 

(A111 

By similar manipulations it is possible to eliminate P, and PA from (AS) and 
express J, in terms of p7+2 and PA+2. For n + 0 this result is 

(2n+3) (1 -p2)  
(n + 3)  (n+ 3 )  (n  + 1 )  n 

J, = 

The Legendre polynomials P, are even or odd depending on their index n being 
even or odd. The products P:, PL2 are even, whereas products of the form P, PA 
are odd. From (A 11) or (A 12) it  is evident that J, is an odd function of p and 
hence vanishes a t  ,u = 0. [In fact, when n is even, J, has a factor p3, see (A la).] 
The factors ( 1  -p2)  in (A l l ) ,  or (A 12),  and (A 14) indicate that J, has double 
zeros for p = k 1. 

= 1 to obtain Differentiate ( A  14) and set 

Therefore, J, > 0 in the neighbourhood of p = 1. We will now show that 
J, (n  > 0 )  vanishes only a t  the points p = 0, f 1. 

Assume J, has a zero in the interval I ( 0  < p < 1) .  Then since it is a continuous 
function which is zero at the endpoints, its derivative must pass through zero a t  
least twice in I .  From (A 14) the zeros of JA coincide with those of PA and PA+2. 
J, is initially positive in the neighbourhood of ,u = 1,  becomes negative by hypo- 
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thesis, and returns to zero at p = 0. Therefore, for at least one zero of JA, J, must 
be negative (it cannot be zero as will be shown). The values of J, when Jk vanishes 
are given by (A 11) and (A 12) with PA = = 0, i.e. 

and 

Thus, Jn > 0 at all points where JA = 0 in I. Hence, the assumption that Jn has 
a zero in I must be incorrect. It is impossible for J, = JA = 0 a t  a point in I 
because Pn and PA never vanish simultaneously. Since J, is odd this result is 
also true for - 1 < p < 0. 

Jo is given by Jo = (P- 1)2(p+4), (A 18) 

and this function has a double zero for p = 1 and a simple zero at ,u = -4. 

A.3. Values for a1 and a2 in the particular solution yn(,u) for n > 0 

s(s + 1) 
+++.:,-l-s fi]) * 

All arguments are at  ,,!A = 1. 

A.4. The constants in (3.11) 

(A30) 

(A21) 

3587 359 91559 2352 90239 
b -(-/35-m - 2772 13860 1155 13860 p --p3+--p+-p 

233 32 1 b 
- 99 99 p' 

(A 24) 
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32 
b4 = -99, 

b 

b - - 3 147 ( 2 7 p 2 - g )  , 

3238 701 
3p4 - 1155 p2 + Ez) / p ( 1  +.PI. 

( A  36) 

gn(P)  

g o b )  = 3 l ( P )  = 07 

Appendix B 

(B 1) 

c, = -4c, (B 2) 

3m(,.%) = m [ ( n - 6 ) ( n - 5 )  1 -p2 ( n - 4 )  ( n - 3 ) g n - 2 + 2 ( n 2 - 9 n + 2 1 ) ( l - p 2 ) g ~ - 2  

(B 3)  

The pressure pc  calculated from the core-flow stream function $&, p) is 

Unspecified arguments are at a general point ,u, and primes denote differentia- 
tions with respect to p. An arbitrary base pressure po  is introduced as the 
constant of integration in the expression for K(p) .  In  deriving the above result 
for pc, a term c,lnt appears, where c6 is the constant in (5.5) for n = 6. This 
constant must be set equal to zero from arguments presented in 5 5.  



s=n 

s=o 
C, = 4,5w2r [ (s-  6)hA-,h;- (n-s)h,-&t], 

s=n 

s=o 
D, = X ( ( n  - s)  h,-,[w2A6 - w2r2h: + 2w2rhi + 4P”z2hr] 

+ ~;-J(s - 8 )  0 ~ 7 ~ h ; -  4P2r2(s - 6)h; - (8 - 4 )  w2AS]), (C 9) 
s= n 

s=o 
En = 2P C { (n - s)  hn-s[r3h: - r2hl + A, - rAi] + h;-s[(s - 5 )  rA, - (S - 7) rsh;]), 

(C 10) 

(C 11) 

(C 12) 

(C 13) 

(C 15) 

N, = (n-3) [ (n-2)An-2rA;] ,  (C 16) 

(C 17) 

s=n 

s=o 
F, = 7 C ( ( n  - s)  h,_,[2As - rA;] + (s - 6 )  rh;, A,), 

In = w4hiv n ?  

J, = - 4Pw2[7h2 + h,”], 

M, = 2Pr[2(n-4) ( ~ h L ) ‘ - ( n - 3 )  (n-4)hL-A;],  

A ,  = (n  - 1) [nh, - 2rh;l. 

K ,  = ( n - 4 )  (n-5)w2hL-2w2(n-5)7h~+4P2r(rh;)”+w2AL, (C 14) 

Unspecified arguments are at a general point r. 

C.2 .  Construction of particular integrals of (6 .5 )  which asymptote to 
a polynomial of degree < n +  1 

From (6.15) and (6.16) h0(7) satisfies (6.11). Assume h,,h,, ..., h,-, satisfy (6.11). 
Using these asymptotic values in the equations for B,, C,, D,, En, F,, I,, J,, K,,  
M,, N, given in 3 1 of this Appendix we find for large 7: 

B, = B, = 0, B, N rn-l  for n 2 2, 

co 0, C, -9  for n 2 1, 

D, N rn+l for n 2 0, 

En N rn+3 for n 2 0, 

Fn N rn+3 for n 2 0, 
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I,, I,, Iz N 0, In N rn-3 for n > 3, 

J07 J1 O7 J, N I-"-~ for n > 2 ,  

KO 0, Kn N 7n-l for n > 1,  

Mo 0, M, N rn for n > 1, 

N, N ~ n + l  for n > 0. 
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Substituting these expressions in the P,'S, it  is easily verified that, for n > 1, 

Zn(r ,  h,, hl, . . ., hn-,) N P-'. (C 18) 

Thus, in general we can write 

s= 0 

To find particular solutions of (6.5) when r is large, the asymptotic vaIues for 
the coefficients and P, will be used, i.e. we must find solutions of the equation 

s=n-l 

s=o 
wzIIz  + (n- 6 ) a o 1 1 1 ~  = C dsrs (n > 1). (C 20) 

A particular solution for n + 6 is 
s=n+1 

s=o 
n,(r) = esrs, 

where the constants e, are related to the constants d, by the recurrence formulas 

en+, = dn-l/(n + 1) n(n - 6 )  a,, for n > 1, (C 2 2 )  

en = d,-,/n(n- 1) (n- 6 )  a,, for n > 1, (C 23) 
and 

(C 24) 

el and e, are arbitrary constants because a linear function can be introduced as 
a complementary solution of (C 20). Thus, for n + 6 ,  II,(r) N ?=+I. When n = 6 ,  
(C 20) can be integrated directly to give 

(C 25) 

where the Kn's are arbitrary constants. For & to asymptote to a polynomial of 
degree 7 it  is necessary that a, = a, = 0, (C 26) 

in the asymptotic expansion of Z6(7) .  A straightforward but tedious calculation 
shows that (C 26) is satisfied. In  the calculation i t  is necessary to use values for 
a,, and a,, (m > 2 ) ,  which can be found in terms of a,, and all from the differ- 
ential equations for g,(p) and g,(p). Therefore, particular integrals of (6.5) can 
be found which asymptote to a polynomial of degree < n + 1 for all n. 

t In some cases 
$ When m = 1, (C 23) determines e2. 

= 0; e.g. when n = 1, A?, - 0. 
6 Fluid Mech. 2 


